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We consider the behaviour of an internal gravity wave encountering a critical level 
in a stratified fluid, assuming the critical-level flow to  be dominated by nonlinear 
effects. The background flow is a shear layer, and the stratification is sufficiently 
strong to support wave propagation everywhere. Incident and reflected waves are 
permitted below the critical level, and a radiation condition is imposed far above it. 
For this geometry we construct, by a combination of asymptotic and numerical 
means, steady, nonlinear solutions, and discuss the associated transmission 
coefficients, reflection coefficients, phase shifts, and resonance positions when the 
system is forced from below. 

The inviscid solutions we exhibit have continuous density and velocity everywhere, 
and so do not require the introduction of internal viscous boundary layers. Further, 
the streamlines bounding the recirculating cat’s-eye regions have corners, just as in 
the unstratified case. For weak stratification, the transmitted wave is nearly as 
strong as the incident wave, and there is accompanying strong over-reflection. As the 
stratification increases, the critical level becomes a nearly perfect reflector. The 
amount of transmission depends on wave amplitude, and the sensitivity increases 
with increasing stratification. 

There are regions of parameter space for which steady solutions could not be 
found. The critical-layer structure appears to break down by unbounded thickening 
when the stratification becomes too strong, suggesting that in these cases some 
neglected physical process must intervene to limit growth of the recirculating region. 

1. Introduction 
The fate of an internal gravity wave encountering a critical level (where the fluid 

speed equals the wave’s phase speed) determines the behaviour of a considerable 
variety of important physical systems. For example, the amount of reflection and 
transmission largely determines the vertical distribution of gravity wave pseudo- 
momentum stress in the Earth’s atmosphere, which greatly affects the 
mesospheric (Fritts 1984) and tropospheric (Palmer, Shutts & Swinbank 1986) 
circulations. The phase and strength of the reflected wave is also the key to 
predicting the occurrence of high-drag states of stratified flow over an obstacle 
(Peltier & Clark 1983; Bacmeister & Pierrehumbert 1988). Many examples of a 
similar nature could be cited. 

The subject of internal gravity wave critical-level interactions has a long history, 
which is reviewed in some detail in Maslowe (1986). Understanding of the linear case 
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is essentially complete, owing to the work of Booker & Bretherton (1967) and 
followers. In  essence, the incident wave is largely absorbed whenever the 
stratification is much in excess of that required to render the flow stable to 
Kelvin-Helmholtz instability. For the analogous unstratified problem of a barotropic 
Rossby wave impinging on a critical level, the transient and steady-state nonlinear 
behaviour is thoroughly understood as well (see for example Killworth & McIntyre 
1985). After a sufficiently long time the critical level becomes a perfect reflector. The 
nonlinear stratified problem is much harder, owing to the lack of a conserved scalar 
vorticity. In the present work, we adopt the approach of constructing steady 
solutions to the nonlinear problem satisfying plausible physical constraints. It is 
anticipated that these represent end states of the long-term evolution of the initial- 
value problem, but the time evolution is not explicitly treated. This approach is 
similar to that employed to good effect by Benney & Bergeron (1969) in the first 
treatments of the nonlinear unstratified case. The programme we have undertaken 
complements asymptotic approaches such as that of Brown & Stewartson (1980), 
which compute the time evolution in detail, but cannot pass to the infinite time limit 
when there is appreciable stratification. It should be emphasized that although we 
invoke viscous arguments twice in order to close the problem, the solutions we 
construct are solutions of the inviscid equations and have discontinuities of vorticity 
across the cat’s-eye boundaries. This does not contradict the results of other authors 
(e.g. Haberman 1972; Brown & Stewartson 1978) who show that the vorticity 
diffuses out until the mean flow is modified. Our steady inviscid states should be 
viewed as steady on a timescale which is small compared to the viscous timescale. 
The mean flows of our solutions are modified mean flows of unknown initial states. 

Our work follows directly in the tradition of Maslowe (1972, 1973) and Graham 
(1982), but with fewer restrictions on geometry. Specifically, the stratification is 
strong enough to support wave propagation everywhere, and not just in the vicinity 
of the critical layer. This permits us to stipulate forcing by flow over an obstacle well 
below the critical layer, and to impose a radiation condition far above the critical 
layer. Our solutions thus have fewer built-in symmetries than previous solutions, and 
are closer to the physical situations of interest in atmospheric problems. This 
configuration also allows us to evaluate reflection and transmission coefficients. The 
asymptotic critical-layer equations that are the basis for our study are precisely 
those derived by Maslowe, but the numerical methods used to solve them, the 
boundary conditions imposed, and the physical constraints required to be satisfied 
are all very different. Most notably, we make use of a ‘torque condition ’ to determine 
the vorticity in the recirculating cat’s-eye regions, and allow a shift in the position 
of the critical layer ; the latter allows us to construct solutions which have no velocity 
discontinuity at the cat’s-eye boundaries, and which therefore do not require the 
introduction of viscous boundary layers. Moore & Saffman (1982) also constructed 
solutions with continuous velocity and discontinuous vorticity using a considerably 
different approach when they considered finite-amplitude waves in an unstratified 
fluid. Like Graham they assumed that the vorticity distribution was unaltered 
during the evolution to the final steady state. In place of our torque condition they 
determined the vorticity inside the cat’s-eyes by assuming that the total vorticity of 
the final state was the same as for the initial state. For a stratified fluid, however, 
density gradients can generate vorticity making this assumption questionable. We 
also take the point of view that the evolution to a final steady state will involve 
turbulent mixing, a further reason making such assumptions inappropriate. 

The mathematical formulation of the problem is described in $2; here we also 
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briefly recapitulate the derivation of Maslowe’s asymptotic equations, which 
establishes notation. Some basic properties of the equations are derived in $3.1, and 
properties of solutions with continuous velocity everywhere and the torque and 
corner conditions are discussed in $3.2. A numerical method for computing these is 
given in $4.1 ; general features of the solutions are illustrated through a detailed case 
study described in $ 4.2, while the broader dependence of reflection coefficients, 
transmission coefficients, resonance positions and cat’s-eye shapes on the controlling 
parameters are taken up in $4.3 and 4.4. Our principal conclusions are summarized 
in $5.  

As in most previous studies we restrict attention to two-dimensional waves which 
are periodic in the streamwise direction. The case of waves forced by a localized 
obstacle in a horizontally unbounded medium is of equal physical interest, but will 
be deferred to future work. We caution that localized waves are apt to behave rather 
differently, owing to the fundamental difference in streamline geometry. A less 
important restriction is our concentration on incompressible flow ; compressibility is 
unlikely to affect features due to the critical level, as its thickness will typically be 
much less than a scale height in terrestrial circumstances. 

2. Formulation of the problem 
Consider a two-dimensional incompressible non-rotating flow governed by the 

Boussinesq equations. Let the horizontal and vertical coordinates and velocities be 
(5,~) and ( u , w )  respectively, while p is the density variation with respect to a 
constant value non-dimensionalized to 1. 

Consider a mean horizontal flow of the form 

(u, w , p )  = (fi(4, O,y(z)) (2.1) 
which has a single zero wind line at z = 0 with U(0) > 0 and p’(z) < 0 (primes denote 
differentiation with respect to z) .  In addition, fi approaches a constant value far 
above the zero wind line. This basic state is an exact solution of the inviscid 
Boussinesq equations. The non-dimensionalization and choice of the representative 
density value has been done so that fi= 1 far above the critical layer and 

lim (O(z), Q(z ) ,p ( z ) ,  p ’ ( z ) )  = (0,1,0,  - 1). (2.2) 

Suppose a perturbation is introduced below the zero wind line via a solid boundary 
z+o+ 

at 

where E is a small parameter controlling the amplitude of the variations in the 
boundary. Assume that after a period of time the flow settles into a quasi-steady 
state, that is, a state which is steady on timescales much less than the viscous 
timescale. These quasi-steady states, henceforth referred to azj steady states, are 
steady-state solutions of the inviscid equations. The goal of this paper is to establish 
the properties of possible steady states, and to construct explicit examples. Only 
solutions periodic in x are considered. Viscous effects are brought in only to close the 
inviscid problem. 

It has been known since Bretherton (1966) that steady, linear inviscid theory 
breaks down near a critical level, which in this case is at the zero wind line z = 0. 
Solutions can be continued through the singular region only through the addition of 
nonlinear or viscous effects. For the geophysical applications we have in mind it is 
the former that are of primary interest. 

z = -H+Eh(2),  (2.3) 
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FIQURE 1.  This schematic diagram shows the general form of the solution forced by flow over a hill. 
The arrows on the left represent the mean flow. Some of the incident wave is reflected and some 
is transmitted by the cat’s-eyes. 

The region of the flow z > --H+ ch(x) is naturally separated into three regions. In 
a thin neighbourhood of the critical level the flow is nonlinear. Above and below it 
are two regions where, because of the small amplitude of the forcing, the flow may 
be taken to be linear. The final steady state will have incident and reflected waves 
in the lower linear layer. Above the nonlinear critical layer the flow is assumed to be 
stratified so that the waves escape to  + a. An upper radiation condition is applied 
so that only upward-propagating (transmitted) waves are present. Previous authors 
have taken the fluid to be stratified in only a finite neighbourhood of the nonlinear 
critical layer so that only trapped modes were possible. The problem considered here 
has more asymmetry about z = 0 because of the different waves in the two linear 
layers. A schematic of the situation is shown in figure 1. The nonlinear critical layer 
consists of regions of open streamlines and regions of closed streamlines (figure 2), the 
latter being commonly called cat’s-eyes. 

In relating the steady solutions to the outcome of an initial-value problem, it may 
be reasonable to assume that within the linear regions these profiles are little changed 
from the initial state ; near the critical layer, however, strong mean flow modifications 
are expected and there is no reason to expect the ultimate steady profile to resemble 
the initial one particularly. Let the mean horizontal velocity and density of the 
perturbed steady state in the upper and lower linear layers be Du,,(z) and pu,l(z). It 
will be stipulated that UU,,(z) and j&(z) are all constant far from the critical layer 
so that upward- and downward-propagating waves can be unambiguously dis- 
tinguished. A slight modification of the non-dimensionalization allows us to make 
(2.2) hold for Uu and pu. 
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Linear region 

.................................................................................... 

Critical layer : open streamlines 

Critical layer : open streamlines 

.................................................................................... 

Linear region 
FIQURE 2. This schematic diagram shows an expanded view of the nonlinear critical layer. It 
consists of regions of open streamlines and a central region of closed streamlines where the density 
and vorticity are constant. 

In terms of the stream function the governing equations in non-dimensional form 

( 2 . 4 ~ )  

are 
a 
at 
- V 2 Y + J ( V 2 Y ,  u') = R i p x + ~ V 2 V 2 Y ,  

V 
(2.4b) @ 

-+ at J ( p ,  u') = p r v z p ,  

where 

and 

( 2 . 4 ~ )  

(2 .4d)  

Here Ri is the limiting value of the Richardson number of the mean flow in the upper 
linear layer as z + 0 ,  v is the reciprocal of the Reynolds number and P r  is the Prandtl 
number. 

In the linear regions the appropriate asymptotic expansion is 

Y = Y+ €y71,0) +s2 y 7 2 , O )  + ... + v( PO*') +€Y(l,') + . ..) + v2( y70*2) +€'y(1'2) + ...) + .... 
( 2 . 5 ~ )  

(2.5b)  

where Y = 1" O(z')dz' and p represent the mean values. Substituting into the 
governing equations we fmd that, for a steady-state solution, the O(s) terms are given 

p(l .o)  = 4 y71.0) ( 2 . 6 ~ )  

~ v 2 y 7 1 , 0 ) _ ~ f 7 n ) y l , o ) + ~ ( 2 )  y71.0) = 0, (2.6b) 

where P ( z )  = -%p'(z) is the Boussinesq approximation of the buoyancy frequency. 

p = p+ sp('*O) + e2p@*O) + ... + v(p(O9 l) + cp l) + .. .) + v2(p'O, + sp'11 2, + .. .) + .... 

4 

by 

U 
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Writing Y(lso) as $(z)eikax leads to the well known Taylor-Goldstein equation for 
the vertical structure 

As is well known (see for example Maslowe 1972), near the point z, where ti = 0 the 
solution to (2.7) has the singular behaviour 

$ A ( z  - z )ai(~,-f)f+ ~ ( z  - Z , ) + i ( ~ , - f ) f  as + z,, (2.8) 

where R, = F(z,). The asymptotic expansion breaks down when Iz-z,J = €7, where 

A new set of variables for the thin critical layer are introduced via 

@ = €-2Y y, 0 = " - Y p ,  6 = E-YZ. (2.11) 

Substituting these changes into the governing equations gives the rescaled governing 
equations used in the nonlinear critical layer. They are 

J (  GC5, @) = B O X  +A@,- e2Y J(@,,, 0) + 2hs2y @x.f;5 + As4y @,,x,, (2.12 a )  

A E2Y 

Pr Pr J ( @ ,  @) = - O,+ h - O,,, (2.12b) 

where the Jacobian is now with respect to x and c. The small parameter h = v/e3Y is 
the cube of the ratio of the thickness of the viscous layer (d) to the thickness of the 
nonlinear layer (€7). It is assumed to be much smaller than 1,  because we are 
interested in the nonlinearity-dominated regime. 

Let $(') and O(O) be the leading-order terms. They are governed by 

J ( @ g ) ,  @O)) = %OF), J(O(O), @O)) = 0, (2.13) 

which have the general solution 

= F(@(O)), @ ( o )  - G(@(O))-E@"(@(O)) .  
55 - 

Note that the density is constant along streamlines but the vorticity @;) is not. 
The arbitrary functions F and G are determined by assuming horizontal periodicity 

and invoking a viscous secularity condition (Maslowe 1972) which requires that the 
equations for the leading-order viscous terms have a solution periodic in x. This 
approach is chosen over the alternative method used by other authors (Graham 
1982; Moore BE Saffman 1982) of assuming that the functions F and G are the same 
as those of the basic state. Because density gradients can generate vorticity and 
because of the likelihood of turbulent mixing during the evolution to a final steady 
state, the use of the viscous secularity condition seems more physically realistic. The 
equations are obtained in their simplest form by first rewriting the governing 
equations using (x, @(O)) as independent variables. This procedure yields equations 
for F and G which involve two constants whose values are determined by the match 
to the linear regions (details of this are given by Maslowe 1972). Combining these 
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with equations for c(x, @O)) and u(x, @O)) gives a complete set of equations for the 
flow in the two regions of open streamlines adjacent to the linear regions. They are 
valid only in regions where the flow is smooth and the velocity is non-zero. 

The complete set of equations for the nonlinear open-streamline regions is 

1 
6 = u 
G-EW 

U@ = 
U 

F = A / l u d x  

where the superscripts have been dropped and 

A = lim&(z)L (a = 1, u as appropriate), 
L+tC 

I, = cudx, I 
G-ZW 

)dx. 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

Note that the constant A will in general have different values above and below the 
critical layer. L is the horizontal period. 

The numerical solution of this system is evaluated by discretizing the x- 
dependence on a uniform grid, employing second-order centred differences for the 
horizontal derivatives. If there are P grid points in the x-direction the problem 
reduces to 2P + 2 coupled nonlinear ordinary differential equations which are solved 
by a fourth-order Runge-Kutta method. The system can be solved only up to the 
streamline along which u first has a zero value. 

3. Structure of the critical layer 
There is no guarantee that the solution to a nonlinear boundary-value problem (if, 

indeed, it exists at  all) is unique ; largely inviscid problems such as the one at hand 
are prone to a particularly high degree of degeneracy. In order to select a solution, 
auxiliary physical assumptions must be invoked, with the understanding that the 
worth of these assumptions must ultimately be probed through numerical or 
asymptotic treatment of the nonlinear initial-value problem. The current under- 
standing of unstratified critical levels has been attained through a similar sequence 
of events. 

Equations (2.15)-(2.22) appear to uniquely determine the solution within the 
region of open streamlines (where u is non-zero), but in fact can support a density 
discontinuity and corresponding velocity discontinuity across any streamline ; we 
shall assume that no such discontinuities exist, although we allow discontinuities 
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across the cat’s-eye boundaries. Within the cat’s-eyes, where (2.15)-(2.22) are 
invalid, we assume the density and vorticity to be constant. The Prandtl-Bachelor 
theorem is commonly invoked to support assumptions of this type, but strict 
application of the theorem is precluded by the stagnation streamlines bounding the 
cat’s-eyes (allowing tracer to ultimately escape to the open-streamline region). 
Nevertheless, the likelihood of rapid mixing due to shear dispersion (as in Killworth 
6 McIntyre 1985) and turbulence driven by overturning density contours makes the 
assumption plausible. 

It will be shown that given the above assumptions the problem becomes one of 
determining the value of seven different constants. However, barring extraordinary 
circumstances, the solutions must have continuous density and velocity across the 
cat’s-eye boundaries (Lamb 1989). This reduces the problem to one of determining 
three different constants. These solutions should be regarded as merely one member 
of a continuous family of solutions. More general solutions, in which for example the 
mixed region extends beyond the cat’s-eyes, may be equally plausible. Such 
enlargements of the parameter space would be best effected in the light of guidance 
from simulations of the full initial-value problem. In any event, it may be hoped that 
gross characteristics such as reflection and transmission coefficients are not too 
sensitive to the details of the flow in the critical layer. 

3.1. Basic properties 
Let Z,(x)  and Z,(z) be the upper and lower boundaries of the cat’s-eyes. In  general 
assume that the density p and horizontal velocity u may be discontinuous a t  these 
boundaries. For any flow quantity Q let 

c+zf--(z) 
= lim Q(z,z) (a = u’l). (3 .1)  

Also let 
p1 = lim p(z,5), pu = lim p(x , l ; )  (3.2a, b)  

C+Zi(z) c-z:(z) 

be the fluid densities immediately below and above the cat’s-eyes. Finally let po and 
No be the constant values of the density and the vorticity inside the cat’s-eyes, so 
that 

( P b ’  C), @&, fl)) = (P0,NO) for Z l ( 4  < s < Z,(z). (3.3) 
Now consider the interior of the cat’s-eyes. The boundaries Z , ( x )  and Z,(z) meet 

at some point (zo, f) .  Thus the stream function necessarily has the same value, Oo 
say, on both boundaries. The general solution in the cat’s-eyes can then be written 
as 

Setting the right-hand side of (3 .4)  to zero and solving for y gives the lower and upper 
boundaries in terms of a(x ) ,  b(z) and No as 

@-Go = lao + a(z)  [+ b(x). (3.4) 

-a@) - [ U 2 ( X )  - 2N0 b(z)]i 

NO 
2, = 

and 

( 3 . 5 4  

(3.5b) 

Evaluating the horizontal velocity OC along the bounding contours shows that 

u:(z) = -u;(x)  = - [a“x) -2Nob(z ) ] i .  (3.6) 
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Hence 

A relationship between the jumps of the density and horizontal velocity across the 
boundingcontours can be obtained by considering the Bernouilli constant 
p + +u2 +Rip[. Continuity of pressure then gives 

u:"x) = u;'(x) + 2% (p, -Po)  Z , ( x )  + c,, (3.8a) 

u:'(x) = u;B(x) + 2% (Po-p,) Z,(x) + c, (3.8b) 

for some constants C, and C,. 
The problem of determining the solution in the critical layer can be reduced to one 

of determining a number of constants. Suppose the solution above the region of 
closed streamlines is known, i.e. 6(x, @), u(x, a), G ( @ )  and P(@) have been solved up 
to the critical streamline on which u first vanishes, where, say, @ = a0. Let a, be the 
value of the stream function on the contour defining the lower boundary of the cat's- 
eye region. This streamline need not be the one on which u first vanishes. Indeed, 
Maslowe (1972) and Graham (1982) chose to begin the cat's-eye region before the 
critical streamline was reached, evidently in an attempt to fix the position of this 
region at z = 0, where the undisturbed wind profile has its zero. Given that there is 
ample opportunity for mean flow changes in the course of evolution from the 
undisturbed state, there seems to us little reason to impose such a constraint. We will 
choose @, = Go, and thus not begin the cat's-eye region until forced to do so by the 
breakdown of (2.15)-(2.18). Once the value of dju is chosen, Z,(x),u:(x) and p, are 
known. 

The jump condition ( 3 . 8 ~ )  shows that, given the density po in the central region, 
u;(x) is determined since C, is determined on the basis that u; has a minimum value 
of zero (u; being 2 0). The point at  which this occurs is where Z , ( x )  and Z, (x )  meet. 

Equations (3.6) and (3.7) give u: and then Z,(x) once No is known. Knowledge of 
p, and C, then determines u;(x). Finally the flow field below Z, (x )  needs to be 
determined. Z,(x), u;(z) and p1 provide initial conditions for the equations for 6, u and 
F .  An initial condition G, for G is still needed. Also, recall that the equation for F 
involves a constant A which may have different values A,  and A ,  above below the 
critical layer. Because of the large amount of mixing due to such nonlinear effects as 
wave breaking it is not clear what the relationship between A ,  and A, should be. 

3.2. Continuous solutions 
The problem thus far is to determine the values of the seven constants aU, po, No, p,, 
C,, G, and A,.  The most physically interesting solutions are those for which the 
velocity, and hence the density, is continuous everywhere. This restraint dictates 
that dj, = Go, in order to prevent a velocity discontinuity across the point of contact 
of the lower and upper cat's-eye boundaries. It further fixes the values of po, p,, and 
C,. Only the values of three constants No, GI and A, remain to be determined. 

The first question to be considered is the behaviour of Z,(z) at x,,, the x-coordinate 
of the point on Z,(z) where the horizontal velocity is zero. In particular, is Z,(x)  
continuous at  xo or not Z If it is not continuous the boundary has a corner at  xo. This 
property is of some interest, as the results reviewed in Maslowe (1986) would seem 
to imply that lack of corners in the cat's-eye boundaries is a feature distinguishing 
the stratified from the unstratified case. 

A consideration of the unstratified problem, for which the leading-order problem 
13 FLM 238 
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can be solved analytically, is instructive a t  this point. For an unstratified flow exact 
analytic solutions of the nonlinear critical-layer equations can be obtained. It is well 
known that when there is a single harmonic in the linear layers there is a jump in the 
slopes of the cat’s-eye boundaries at the point where they meet (e.g. Benney & 
Bergeron 1969). There is also, however, a family of solutions for which Z,(z) and Z,(x)  
are smooth. 

For the unstratified problem the leading-order solution in the critical layer is given 
by a5. = UU@ = G(@). 

Applying the inviscid secularity conditions (identical to the one for the stratified 
problem) shows that G must be constant. That is, the unstratified problem can be 
obtained from the stratified problem simply by setting equal to zero. Hence the 
critical-layer solution is 

where b(x )  is determined by the stream function in the linear layers. The shape of the 
streamlines is given by solving for Z in terms of g5 giving 

@ = $ZAe+b(x) ,  (3.9) 

z = * ( 2 / G ; ) @ - b ( x ) ] %  

The cat’s-eye boundaries are obtained by setting @ = Q0, where Q0 equals the 
maximum value of b ( x ) .  If b ( z )  consists of a single harmonic, as is usually assumed, 
we h d  that 2, and 2, have corners at the points where they meet. There is, 
in addition, a class of solutions of which 2, and 2, are smooth, namely when 
q50-b(x) = az(x)  with a(x )  2 0 or a(x )  < 0. Such a solution requires a condition 
between the leading harmonic and the higher harmonics to be met. 

There are no exact solutions for the stratified problem. Note however that, at 
the point where Z, (x )  and Z, (x )  meet, the vertical density derivative is zero since 
pc = up@ and u = 0 and p @  = F is finite. Thus, locally the flow is unstratified. We 
might expect then, that, as for the unstratified problem, Z , ( x )  and Z,(z) will usually 
have corners a t  xo. This is borne out by our numerical solutions, for which only cases 
with corners were found. In the light of this, the cornerless solutions obtained by 
Maslowe most likely result from the geometric constraints imposed, and are not an 
inevitable concomitant of stratification. 

3.2.1. The corner condition 
Let Z , ( x )  and Z,(x)  meet a t  xo. If Z, (x )  and Z, (x )  both have corners, i.e. 

discontinuous derivatives, a t  xo, then a condition relating the vorticity in the central 
region to the vorticity immediately above and below the corner can be obtained. 

Because w = uQ it is essential that f;, be a continuous function of x wherever u is 
non-zero. Otherwise there is a discontinuity in the vertical velocity and in the 
pressure. In  particular the vertical velocity w must be continuous along the vertical 
line x = xo. Now w is continuous with respect to x a t  (xo, Q0) since u(zo, Q0)  = 0 .  In 
order that w be a continuous function of x immediately above and below this point, 
w5 must also be continuous a t  (xo, O0). Differentiating w = UQ with respect to 5 gives 

a 
w5 = u a  ( U Q )  = UU@ C x - U x .  

In order that w5 be continuous a t  (xo, Q 0 )  we must have 



Steady-state nonlinear internal gravity-wave critical layers 381 

FIQURE 3. If the corner condition is not satisfied the slope of the streamlines and hence the vertical 
velocity have discontinuities along a vertical line on the side of the critical layer that is computed 
after the cat’s-eyes are obtained. 

where [Izo gives the jump in value a t  xo, i.e. for a general function Q, 

[&(41z0 = - &(G). 
Imposing this condition along Z , ( x )  and Z,(x) and using the fact that the vorticity 

is continuous along a streamline yields two equations : 

[u;12, = N l ( z O )  [z;lzO = Nb[z;l~o (3.10a) 

and [ 4 I z O  = Nu(xo) [ZuIz, = Na[z3zo, (3.10b) 

where iVl and Nu are the vorticities along Z , ( x )  and Z,(x) respectively and Na and Nb 
are the values of the vorticity immediately above and below the corner. 

Eliminating u, and 2, by using (3 .6)  and (3.7) results in two equations in terms of 
[u;],. and [Z;],.. A non-trivial solution of these equations exists if 

1 
(3.11) 

We refer to this as the corner condition. 
If this condition is not met the effects are quite dramatic. Figure 3 shows the 

streamlines for a case for which the corner condition is not met. In this picture the 
upper side was calculated first so that (3.10b) is satisfied but equation (3.10a) is not. 
The streamlines below the cat’s-eye all have slope discontinuities along x = xo and 
hence discontinuities in the vertical velocity. 

3.2.2. The torque condition 
The corner condition (3.11) is a necessary condition that must be satisfied. In order 

to determine the three constants two more conditions are needed. A second is 
obtained by a consideration of the viscous stresses on the cat’s-eyes. This leaves a 
one-parameter family of solutions, parameterized by &/A,. 

13-2 
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In the physical world viscous forces are present and so the steady inviscid solutions 
will be not steady but will evolve on a slow viscous timescale. We can try to minimize 
this drift. One approach is to consider the torque on the cat’s-eyes due to viscous 
forces and to try to minimize it. 

Applying the Rankine-Hugoniot condition to the horizontal momentum equation 
gives 

where [ ] is again the jump across the streamline Z ( z )  which in this case can be either 
Z,(s) or Z, (x ) .  Since u, w and p are continuous this reduces to 

-2(x)[U2+p]+[uw-Ahuc] = 0, 

[u,] = [UU@] = 0. 

This cannot be true for the inviscid solutions since on one side of the contour the 
vorticity uuo is constant, while on the other side uu6 = G-%Z(x)F’ which varies 
with x. We can instead consider integrated values. Define Ml and Mu to be the torques 
per unit length along the lower and upper boundaries. Thus 

(3.12) 

The total torque per unit length around the cat’s-eyes is 

M = +(M,+Mu).  (3.13) 

Defining k = %~~(,,(z,)-~(:Z,(s)dx),  

r = Au/Al, 
q2 = - Z A , / L  > 0, 

N, = G,-RiZU(~,)Fu,  

Nb = G 1 - R i Z , ( ~ , ) F ; ,  

and making use of 

( 3 . 1 4 ~ )  

(3.14b) 

( 3 . 1 4 ~ )  

(3.15a) 

(3.15b) 

gives Nb -No + k ,  ( 3 . 1 6 ~ )  

and 

2rv2 Mu = N,-No-rk+- ,  
NO 

ru2 
M =  ~ ( N a + N b ) - N o + - + + ( l - r ) k .  

NO 

(3.16b) 

( 3 . 1 6 ~ )  

Using the corner condition to eliminate Nb in ( 3 . 1 6 ~ )  gives M as a function ofNo and 
the parameter r :  

(3.17) 

where 

f(No ; r )  = N;: - (2N,+f( 1 - r )k)#  + (x- r c 2  + (1  - r )  N, k )  No +2rN,  c2. (3.18) 

A requirement on the solution is that N,, Nb and No should all have the same sign, 
which in this case is positive. In  order that Nb > 0 the corner condition implies that 
we need 

(0, UV,). (3.19) 
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Ideally we would like to have the torque equal to zero. This is not always possible. 

f ( N o ;  1 )  =~-2Na~+(N2,-c72)N0+2Naa2 (3.20) 

and can easily be shown to be strictly positive on (0, ma). The torque condition that 
will be used in this paper is that No is chosen to be the value of N E  (0, UV,) which 
minimizes M ( N ;  r ) .  

From now on r will be set to 1. This greatly simplifies the following analysis, which 
can also be done for general r.  Let g ( N )  be the total torque for the case r = 1. Graphs 
of the function g(N)  are given in figure 7. The independent variable N€(0 ,2Na)  
represents the possible values of the vorticity inside the cat’s-eyes. No is the value of 
N which minimizes g. From (3.17) and (3.18) we have 

For example if r = 1, f becomes 

(3.21) 

Since f ( N ;  1) > 0 on (0, ma) it  follows that g(N)  -+ + 00 as N-tO or as N-+ ma. Thus 
g ( N )  > 0 in (0,2Na) and must have a minimum value in (0,2N,). Now 

( 3 . 2 2 ~ )  

where h(N)  = -N2(N- 3Na) (N-N,) - (r2(N- 2iV*)Z. (3.223) 

It is easily seen that h has one zero in (Na,2N,) and another zero in (2N,,3Na). 
Considering inflexion points shows that any other possible roots must lie in (O,Na). 
Numerical determination of No is hence straightforward. 

Because of the symmetry inherent in the corner condition and in r = 1, the above 
argument can be repeated by replacing N, with Nb. All the cases described in 94 have 

The above gives the procedure used to determine No if r = 1. If r =I= 1 a similar 
analysis can be given. One possible line of pursuit would be to try and fmd a value 
of 11 - r (  which makes the total torque vanish, though we have not yet made any 
attempt to carry out this programme. 

N o E ( N a , m a ) .  

4. Continuous critical-layer solutions 
In this section some global numerical solutions are presented. They all have 

continuous velocity and density. The vertical gradient of the basic density is 
assumed to be constant and to have the same value in both linear layers. Hence 
A ,  = A, and as shown in $3 this, along with the corner condition and minimization of 
the total torque around the cat’s-eyes, closes the problem. The sensitivity of the 
results to the torque condition will be discussed. 

Ideally one would like to find the solutions for flow over a given hill. To do so one 
would have to iterate over two constants until the upper radiation condition was 
satisfied, because the boundary condition at  the hill does not completely determine 
the waves in the lower linear layer. This would be a costly computational effort. A 
much easier procedure which yields as much interesting information about the 
physical characteristics of the solutions is to start with a given transmitted wave of 
amplitude T, find the global solution, and to then calculate a variety of hills which 
would give such a solution. This is the procedure followed throughout this section. 
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Attention is focused on the case where only a single harmonic is present in the 
transmitted wave, so that the forcing has the form !Y = T cos (ax) a t  some height H 
above the critical level. This is physically realistic only if the generation of higher 
harmonics in the critical layer is not significant. This will be seen to be the case for 
a large range of parameter values. 

A crude estimate of the dimensional values of the various terms, in particular the 
wave amplitudes and wavelength, can be obtained by the following considerations. 
Mean wind speeds in the atmosphere are typically of the order of 10 m s-l and change 
by this amount over distances on the order of 1-10 km. This suggests a lengthscale 
of between 1000 and 10000 m. Thus, a non dimensional wave amplitude of 0.1, 
typical of the largest size of a transmitted wave we consider, corresponds to a 
dimensional height of 0.1-1.0 km, while a value of 0.00001 corresponds to  an 
extremely small wave of 1-10 cm. With this scaling, using a = 0.1 gives a horizontal 
wavelength of 60-600 km. 

The remainder of this section is in four subsections. In  $4.1 a few brief comments 
on the accuracy and interpretation of the results are made. I n  $4.2 a description of the 
general features common to all solutions is given. Section 4.3 describes in detail the 
effects of changing the four parameters T (transmitted wave amplitude, providing 
some control over the incident wave amplitude), (the Richardson number of the 
basic flow just above the critical layer, measuring the strength of the stratification), 
Pr (the Prandtl number) and a (the leading horizontal wavenumber). Section 4.4 
looks in more detail a t  some of the most physically interesting quantities, such as the 
reflection and transmission coefficients, hill amplitudes and resonance positions. 

4.1. Numerical accuracy 
A number of different tests were performed to  check both the accuracy of the 
numerical method and the validity of the asymptotics. Some of the more important 
points are mentioned here. 

I n  regions of steady, inviscid, x-periodic flow the Reynolds stress T = Suwdx is 
constant with height. This provides a useful criterion for determining whether a valid 
global solution has been obtained. For most of the solutions presented in this and the 
following sections the Reynolds stress in the two linear layers differed by about 

'YO. For parameter values near certain critical values this error rises extremely 
rapidly. A solution is deemed valid if the two Reynolds stresses differ by less than 
about 0.5 'YO. This value is arbitrary and not crucial because for solutions with such 
an error, changing the parameter values by 1% (in the appropriate direction) 
increases this error by a factor of 10 or more. 

As will be seen in34.3 the accurate determination of N,, the vorticity immediately 
above the cat's-eye corner, is vital. This requires an accurate solution of the ordinary 
differential equations in the critical layer. The equations are singular at the cat's-eye 
corner where the horizontal velocity is zero. Because of this they can only be solved 
up to a streamline along which the velocity becomes very small but is still non-zero. 
How close the streamline on which u first becomes zero can be approached depends 
on the number of grid points P ,  the accuracy requirements and the minimum step 
size h,,, allowed by the ordinary differential equation integrators. Both a fourth- 
order adaptive step R u n e K u t t a  method and a BulirschStoer method were tried, 
giving the same results. Using 1024 grid points in the horizontal direction and a 
minimum step size of about 1.0 x 

It was found that the numerical results can be very sensitive to the choice of the 
contour at which the upper linear solution is numerically matched to the inner 

gave sufficiently accurate results. 
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nonlinear solution. This sensitivity is a numerical artifact. For example, using 
tanh ( 2 )  as the mean velocity, matching a t  z = 0.2 or x = 0.4 gave radically different 
solutions for the simple reason that x = 0.4 is not small enough for the asymptotic 
approximation U % z to be valid. Thus the vorticity of the mean flow is very different 
at  the two values of z.  Maslowe's viscous secularity condition (which is enforced only 
in the nonlinear region, however one should choose to define its boundaries) 
essentially drives the flow to constant density and velocity gradients, with values set 
by values at  the matching contour. For the numerical calculations one must be 
careful that the matching contour has values of x sufficiently small so that l7 % z. 

In some sense, this unphysical sensitivity represents a failure of the asymptotics, 
as the external forcing terms which would maintain the large-scale flow against 
diffusion are asymptotically negligible in (2.17) and (2.18); yet the timescale for 
diffusing out the large-scale background flow is so long that the effect of the forcing 
terms would become important. An alternative interpretation is that during the 
evolution to a final steady state the mean flow is significantly modified well beyond 
the boundaries of the nonlinear critical layer of the final state, i.e. the nonlinear layer 
is thicker during its evolution than during its final steady state. 

The use of a mean flow which has constant vorticity in a large neighbourhood of 
the critical layer allows us to sidestep this numerical difficulty. The mean flow used 
for all the results cited here is 

( x  > 1.5) 

( z  < 0.6), 
(0.6 < x < 1.5) 

where p ( z )  is a fifth-degree polynomial whose coefficients are chosen so that l7 and its 
first two derivatives are continuous. Because the ordinary differential equation for 
the vertical structure in the linear region involves the second derivative of U it is 
necessary to make U' and P continuous. Otherwise there would be extraneous 
reflections at  their discontinuities. The important feature of this basic profile is that 
it has a vorticity which is equal to 1.0 in a wide neighbourhood of z = 0. Any other 
basic profile with this feature would do. 

On the other side of the critical layer the match to the lower linear layer is done 
at  constant z (the numerical procedure for this is discussed below). A basic velocity 
profile for the lower linear layer must be chosen in such a way that the velocity and 
its first two derivatives are continuous at  the matching level. It is also chosen so that 
it asymptotes to some constant value far from the critical level. The constant value 
will always be taken to be - 1.0. If the match to the linear layer were performed a t  
a x level where the mean velocity is close to - 1.0, the mean velocity profile would 
have a large overshoot and regions of large curvature, leading to unwanted partial 
reflections. In order to minimize this effect an attempt was made to start the lower 
linear layer well before the mean velocity reached - 1 .O. This was not always possible 
because if the waves are large enough the flow does not become linear until the mean 
horizontal velocity is comparable to - 1.0. We have chosen to restrict attention to 
amplitude ranges for which the nonlinear region retains its character as a thin critical 
layer with scale distinctly smaller than that of the background shear flow. 

In order to monitor the influence of the basic velocity profile all cases were run 
with two different velocity profiles. The first has the form 

U ( z )  = tanh (a(z-z,))+CeZ, (4.2) 
where the constants a,  c and z,, were chosen in order to make u, and l? continuous 
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at the matching level. Note that U(z )  + 1 + 0 exponentially as z + - co. The second 
velocity profile used was of the form 

where z, is the matching level, f(z) is a fifth-degree polynomial chosen so that 0, 
and V are continuous. The choice of zp varies so that the bump in this velocity profile 
is not too large. Typically the exponential fit (4.2) yields a velocity profile with a 
much smaller overshoot than does the polynomial profile (4.3). Comparing the results 
for two velocity profiles allows one to judge the importance of the choice of the 
velocity profile. In  particular, when studying the effects of changing the various 
parameters on the size of the reflected and incident waves we can determine how 
much of the effect is due to the change in the mean velocity profile in the lower linear 
layer. Throughout the remainder of this section all the results cited are those for the 
exponential fit given by (4.2). The conclusions based on the second profile are the 
same as for the exponential profile. The reflected and incident waves were generally 
larger but the critical parameter values for which a solution could no longer be 
obtained are not significantly changed. 

Numerically, the transition from the critical-layer equations to the linear equations 
must be done at  a particular value z = z,. From the critical-layer solution one 
calculates Y(z, Zm), Yz(z, zm), YZz(z, z,), Yzzz(z, Zm), p(x,  z,) and pz(z, zm). These are 
then decomposed into Fourier series comprising a mean value and a perturbation 
with zero mean. In the linear layer the solution has the form 

(4.4) 

The Fourier decomposition of the nonlinear solution at  z, is used to initialize the 
linear solution. All harmonics are retained. 

Verification that z,does indeed lie in the matching region can be done as follows. 
In the linear layer, Y and p are gover_ned by equations which give a relationship 
between @zz and @as well as between Y and p" (see (2.6)). These relationships should 
hold for the perturbations in the critical layer a t  the matching level, and checking 
these shows that the agreement is very good for the leading harmonic. The agreement 
is very bad for the higher harmonics if they have an amplitude which is much smaller 
than those of the leading harmonics. The source of the difficulty is that, if the ratio 
of the amplitudes of the higher harmonics to that of the first harmonic is of the same 
size as 8, then the nonlinear contributions to the flow from the first harmonics can be 
just as important as the linear contributions of the higher harmonics. Because of this, 
if the higher harmonics are small compared to the leading harmonic we cannot 
draw any conclusions about the higher harmonics except for their size relative to the 
leading harmonic. 

Y(s, 2) = F(2) +sP(s, z ) ,  p(x, 2) = P(Z) +€P"(Z, 2). 

4.2. General description of the global solution 
Before discussing the effects of varying the values of the parameters some of the 
features common to all solutions are presented in this section. 

The constancy of the Reynolds stress with height has an important consequence 
for the global behaviour. It implies that wave global over-reflection occurs at  the 
critical layer whenever there is a non-vanishing transmitted wave. In particular, 
below the critical layer the total momentum flux in the downward-propagating 
waves must be larger than the momentum flux in the waves propagating upwards. 
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FIGURE 4. (a) A series of streamlines in the critical layer. The contours are plotted at constant 
intervals in the stream function. ( b )  Plots of the horizontalvelocity as a function of 5 for the same 
values of the stream function. The parameter values are (Ri, T, Pr, a) = (0.4, 0.02, 1.1, 0.1). 

For at least one mode then, the reflected wave must be larger than the incident wave. 
This should apply to the leading harmonics if they dominate. Generally this is the 
case, except for extreme cases near critical parameter values where most of the 
momentum flux is in the second harmonic. 

The reflected and incident waves are also usually much larger than the transmitted 
wave. This means that the flow in the lower linear layer can be nonlinear even for 
fairly small transmitted waves owing to the combined response of the reflected and 
incident waves at certain heights. For this reason most of the results cited are for 
small values of T; they are characterized by nearly perfect reflection, with relatively 
little transmission. 

In all cases computed N,, the vorticity immediately above the corner of the cat’s- 
eyes, was smaller than Nb, the value of the vorticity immediately below. N, was 
always significantly less than 1.0, usually in the range 0.2-0.7. The vorticity No inside 
the cat’s-eyes was always in (N,, UV,) and was less than 1.0. This is an important 
point because the thickness of the cat’s-eyes is inversely proportional to No. Thus the 
shape of the lower cat’s-eye boundary, and hence the size of the incident and reflected 
wave, is largely determined by the value of No. 

A typical critical-layer structure is shown in figure 4. Figure 4 (a )  shows a series of 
streamlines (i.e. z(z, @) for different values of @). The graphs are depicted using the 
outer vertical coordinate z so that the horizontal and vertical scales are the same. 
Figure 4 (b)  shows the horizontal velocities (using rescaled critical layer velocity) 
along the same streamlines. Note the asymmetry in the streamlines between the 
upper and lower boundaries of the cat’s-eyes. The upper boundary has its maximum 
to the left of the centre of the cat’s-eyes while the lower boundary has its minimum 



388 K .  G .  Lamb and R.  T .  Pierrehumbert 

4 (4 

3 

A - .- 

1 

40 

--$b 

.; 2 

9 
1 

0 
-120 -100 -80 -60 -40 -20 0 20 

5 

0.6 

0.4 

Re(Q 

0.2 

0.0 

- (b) ‘ 

2- - 

- 

1 - - 

-2 

FIQURE 5. (a) The total vorticity and ( b )  the total Richardson number Ri along vertical lines 
through the critical layer. One line (labelled 1 )  passes through the cat’s-eye corner where Ri 
becomes zero. The other (line 2) is midway between two cat’s-eye corners and does not include the 
interior oft& cat’s-eyes. Both quantities approach constant values as one moves away from the 
cat’s-eyes. (Ri, T, Pr,  a) = (0.4, 0.02, 1.1, 0.1). 

to the right of the centre. Notice also the apparent phase shift, in contrast with the 
behaviour (for trapped modes) found by Stewartson (1981) (see also Maslowe 1986). 
A similar asymmetry is not possible for the horizontal velocity since the velocities 
along the upper and lower boundaries are related by ul(x) = -uu(x) .  Figure 4 also 
indicates another property of all solutions calculated : significant enhancement of 
the vorticity in conjunction with a large decrease in the total Richardson number 
Ri (=  z u F / u t ) .  Away from the cat’s-eye boundaries the vorticity and the total 
Richardson number have fairly constant values. This is indicated in figure 5, which 
shows how the vorticity (figure 5 a )  and Ri vary as functions of 5 along two vertical 
lines in the critical layer, one passing through the cat’s-eye corner and one midway 
between two corners. Note that the vorticity and Ri rapidly approach constant 
values as one moves away from the cat’s-eye boundary. This is because the vorticity 
is equal to G-KW. As @ + c o , F + O  and the vorticity approaches G which is 
independent of x and asymptotes to a constant. 

It is interesting to note that the total Richardson number Ri is always found to be 
less than 0.25 in a thin layer along the lower side of the critical layer, typically having 
values in the range 0.050.15. The Miles-Howard theorem thus implies that these 
solutions might be unstable to Kelvin-Helmholtz instabilities. Because the theorem 
provides only a necessary condition for instability, a numerical stability analysis 
would be necessary to settle the question. 
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FIGURE 6. Cat’s-eyes for different values of the Richardson number a. Increasing a deepens 
the lower cat’s-eye boundary. The parameter values are (T, Pr, a) = (0.01, 1.1, 0.1). Curve 1, 
z= 0.15; 2, 0.20; 3, 0.25; 4, 0.30; 5, 0.35; 6, 0.40; 7, 0.42; 8, 0.44. 

Zi 
0.20 
0.25 
0.30 
0.35 
0.40 
0.42 
0.44 
0.46 
0.48 

TABI 

N. No N b  Rl Il Nm Rim 

0.781 0.867 0.976 0.01507 0.01127 1.221 0.134 
0.713 0.817 0.958 0.01758 0.01445 1.228 0.150 
0.635 0.756 0.934 0.02138 0.01890 1.370 0.159 
0.545 0.679 0.900 0.02785 0.02602 1.487 0.158 
0.435 0.576 0.856 0.04205 0.04095 1.692 0.139 
0.381 0.523 0.833 0.05385 0.05313 1.835 0.124 
0.319 0.457 0.805 0.07473 0.07461 2.068 0.102 
0.244 0.437 0.773 0.11493 0.11669 2.522 0.072 

- - - 0.148 0.247 0.735 - 

.E 1. Effect of varying a for (T, Pr, a) = (0.01, 1.1, 0.1) 

4.3. Dependence on T ,  a, Pr and a 
Consider first the effects of varying B. Some pertinent values for the case T = 0.01, 
Pr = 1.1 and a = 0.1 are given in table 1. The quantities R, andI, are the amplitudes 
of the first harmonics of the reflected and incident waves respectively. The term N ,  
and Rim are the mean values of the vorticity and total Richardson numbers at  z,, 
the level used to match the critical layer to the lower linear layer. At this level the 
variation of the vorticity and the Richardson number is small compared with their 
mean values. Dashes indicate that a global solution was not obtained. 

As Ri is increased the value of the vorticity immediately above the cat’s-eye 
corners, N,, decreases and approaches zero. This is the most important trend because 
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FIGURE 7. The total torque around the cat’s-eyes plotted as a function of N, the vorticity inside the 
cat’s-eyes. N has values between 0 and W,. As N, decreases, the value No which minimizes the 
torque approaches its maximum possible value of W,. The minimum also becomes more 
pronounced. For both graphs Pr = 1.1 and a = 0.1. (aLT = 0.01, and curve 1, Ri = 0.15; 2, 0.20; 
3, 0.25; 4, 0.30; 5, 0.35; 6, 0.40; 7 ,  0.42; 8, 0.44. ( b )  Ri = 0.4, and curve 1,  T = 0.02; 2, 0.01; 3, 
0.005; 4, 0.002; 5, 0.0016. 

the value of N, is a very important indicator of whether or not there is a global 
solution. The vorticity in the centre, No, also decreases (as expected since it is 
bounded by UV,) so that the cat’s-eyes become thicker. The shape of the upper 
boundary does not change very significantly. It is the lower contour which greatly 
increases its vertical span owing to the decreasing value of No. This implies that the 
waves on the lower side of the critical layer become larger as Ri increases, and the 
critical level becomes a more nearly perfect reflector. Figure 6 shows a series of cat’s- 
eyes for T = 0.01 clearly illustrating this trend. 

The reason for the decrease in N,  is the following. The perturbation vorticity in the - 

linear layer is given by 

In  the matching region, where 0 is small, the first term in the coefficient of is 
negative and dominates the other two terms. Increasing thus increases the 
variation in YZ2, making its minimum value smaller for a given mean value. This 
minimum value occurs where Y has its maximum; in the trough (crest) of a 
streamline if u > 0 (u < 0) (i.e. above (below) the cat’s-eyes). The solution in the 
critical layer maintains this pattern so that the minimum value of the vorticity along 
the upper boundary of the cat’s-eyes occurs very close to the corner. In  connection 
with this, changing % has very little effect on the mean vorticity in the upper critical 
layer as illustrated in figure 8 ( b ) .  
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The ratio &INa increases from about 1.11 for % = 0.2 to 1.32 for Ri = 0.4 and up 
to 1.79 for Ri = 0.46. Thus, as the solution is about to break down the torque 
condition attempts to make the vorticity in the cat’s-eyes as large as possible and 
hence to make the cat’s-eyes as thin as possible. This trend can be seen in figure 7 ( a )  
which shows, for different values of %, plots of the total torque as a function of the 
possible values of No. Note that not only does the value No of the cat’s-eye vorticity 
which minimizes the torque approach its maximum possible value, but the minimum 
of the total torque also becomes more pronounced and increases. 

Once N, becomes too small ( x  0.2) the solution breaks down. The breakdown is 
expected since as N,+O the cat’s-eyes are forced to become infinitely thick. The 
solution (at any resolution) develops two corners at  the grid points to either side of 
the cat’s-eye corner. This behaviour seems to be tied in to the fact that the vorticity 
becomes slightly negative on one side of the corner. The two corners, situated where 
u + 0, are physically unacceptable. This behaviour is observed to happen after the 
solution has reached a regime for which the waves below the critical layer are very 
large and increasing rapidly with %. 

Two other interesting features of the solutions are that Nm is always significantly 
greater than 1.0, the vorticity above the cat’s-eyes, and Rim is always significantly 
less than 0.25. As % increases the mean vorticity N ,  increases. This trend is due to 
the function G below the lower cat’s-eye boundary which increases dramatically as 
one moves away from the boundary. Its final value far from the cat’s-eye increases 
with % even though its initial value a t  the lower ca t ’ sge  boundary decreases. 
Figure 8 shows how G and the mean vorticity vary with Ri. 

To understand the increase in vorticity consider its mean value along the lower 
cat’s-eye boundary, which can be written as 

f is the value of 6 at the cat’s-eye corner and F’b& the positive value of F’ along the 
lower cat’s-eye boundary, which is essentially Ri. Owing to the deepening of the 
lower cat’s-eye boundary, Q minus the mean value of 5 along the boundary increases. 
The resulting large growth of the second term offsets the small decrease in Nb. Note 
that below the cat’s-eyes the vorticity along a streamline has its minimum value at 
the top of the streamline. Accompanying the significant increase of vorticity is a 
significant drop in the total Richardson number once % > 0.35, after which the large 
increase in vorticity more than compensates the increase in z. 

For very large values of % a different picture emerges. The vorticity changes sign 
before the horizontal velocity becomes zero so that the horizontal velocity starts to 
increase before it becomes zero. No cat’s-eyes are obtained. The calculation shows 
that a very different regime sets in for initial states with large %. In this regime the 
steady state is not characterized by a small shift of the critical layer from that of the 
ambient flow ; instead, for an initial state with a large Richardson number, one may 
expect large mean flow modifications so that the Richardson number of the mean 
flow is significantly reduced before a steady state is achieved. This scenario does not 
contradict the solutions obtained by Brown & Stewartson (1982) who studied the 
initial-value problem for large Richardson numbers. Their solutions are valid only 
for a finite length of time and do not say anything about the solution after an infinite 
amount of time. 

In  summary, increasing % decreases the minimum value of the vorticity along the 
streamline used to match the upper linear layer to the critical layer. This decrease is 
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T N. No R, Il N,,, Rim 

0.075 0.605 0.748 0.1923 0.1750 1.69 0.142 
0.050 0.578 0.722 0.1359 0.1256 1.67 0.144 
0.040 0.561 0.705 0.1125 0.1047 1.67 0.145 
0.030 0.538 0.681 0.0893 0.0839 1.67 0.145 
0.020 0.501 0.644 0.0659 0.0628 1.67 0.145 
0.010 0.435 0.576 0.0421 0.0410 1.71 0.139 
0.0075 0.403 0.544 0.0363 0.0357 1.74 0.134 
0.005 0.356 0.493 0.0312 0.0309 1.81 0.124 
0.004 0.326 0.460 0.0297 0.0296 1.87 0.115 
0.003 0.285 0.414 0.02936 0.02941 2.00 0.101 
0.002 0.212 0.327 0.03546 0.03582 2.40 0.070 

TABLE 2. Effect of varying T for (z, Pr, a) = (0.4, 1.1, 0.1) 

reflected in a decrease in N, which in turn results in a smaller vorticity inside the 
cat’s-eyes and to a deepening of the lower cat’s-eye boundary. Larger incident and 
reflected waves are the result so that the critical layer becomes a more nearly perfect 
reflector. Accompanying this is a vorticity greater than 1.0 and a total Richardson 
number less than 0.25 below the critical layer. If % is too large the solution breaks 
down because N,  gets too close to zero. For still larger values the vorticity becomes 
negative before the flow goes to zero and an upper cat’s-eye boundary is never 
attained, indicating no steady states in this regime. 
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FIGURE 9. Cat’s-eyes for different amplitudes T of the transmitted wave. As T decreases, the cat’s- 
eyes become thinner at first but then start to thicken very rapidly as T decreases further. This 
thickening is due to the decreasing value of No and the result& deepening of the lower boundary. 
The upper boundary continues to decrease in amplitude. (Ri, Pr, a) = (0.4, 1.1, 0.1). Curve 1 ,  
T = 0.020; 2, 0.010; 3, 0.005; 4, 0.002; 5, 0.0018; 6, 0.0016; 7, 0.0014; 8, 0.0012; 9, 0.0010. 

Consider now the effect of varying T,  the amplitude of the transmitted wave. Table 
2 gives some values for the case = 0.4, Pr = 1.1 and a = 0.1. As T is decreased3 
decreases, leading to a breakdown of the solution just as for the case of increasing Ri.  
Figure 9 shows a sequence of the cat’s-eye boundaries for varying T.  Figure 9 ( a )  
shows four of the cases given in the table : T = 0.020, 0.010, 0.005 and 0.002. Figure 
9(b) covers the cases T = 0.001 to 0.002 in steps of 0.0002. Even though No is 
decreasing the cat’s-eyes decrease in thickness for a while. The thickness is 
proportional to u,/No and the decrease in uu, the horizontal velocity along the upper 
boundary, dominates the decrease in No. For No sufficiently small its decrease 
dominates and the cat’s-eyes start to get thicker. The two graphs in figure 9 illustrate 
that the cat’s-eyes have a minimum thickness, in this case at about T = 0.002, and 
that the transition from decreasing to increasing thickness is continuous. The 
solution breaks down at  about T = 0.0016 where N, = 0.159. Note that as in the case 
of increasing Ri the solution breaks down when N, is less than about 0.2. Figure 7 (b) 
shows the total torque for different values of T .  As for the case of varying Ri, as N, 
decreases the minimum value of the total torque increases, the minimum becomes 
more pronounced and the value of No/2Na approaches 1. 

Below the cat’s-eyes the vorticity is again much larger than 1.0 and the total 
Richardson number is much less than 0.25. As the wave amplitude decreases, the 
vorticity below the cat’s-eyes is fairly constant until T is less than about 0.01 when 
the vorticity starts to rise. 

all the trends shown in table 2 are governed by the 
decrease in the value of N,. The vorticity N, just above the cat’s-eye corner is given 

As for the case of increasing 
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0.5896 
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0.6108 
0.6141 
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F: 
-0.0394 
-0.0503 
- 0.0575 
- 0.0686 
-0.0882 
-0.1373 
-0.1659 
-0.2179 
-0.2539 
-0.3106 
-0.4163 

6 0  

0.9708 
- 0.7 156 
- 1.432 
-2.126 
-2.759 
-3.060 
-3.031 
-2.883 
-2.783 
-2.621 
-2.415 

c F: 
- 0.038 

0.036 
0.082 
0.146 
0.243 
0.420 
0.503 
0.628 
0.707 
0.814 
1.005 

TABLE 3. Effect of varying T on G,, F: and lo (z, Pr, a )  = (0.4, 1.1, 0.1) 

by N, = G,-R.L’&F:, where {,, is the value of 5 a t  the corner and G, and FL are the 
values of G and F along the upper cat’s-eye boundary. Figure 10 shows how G and 
the mean vorticity vary with T for Pr = 1.1.  Above the cat’s-eyes G is essentially 
independent of T.  Thus the change in N, is due to changes in C,, Fi which increases 
as T decreases. Table 3 shows that the decrease in N, is due to the large increase in 
Pi. The reason for this large increase is quite simple. Recall that the equation for F 
is 

J ” = A / l u d x ,  
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FIGURE 11. The vorticity immediately above the cat's-eye corner, N,, aa a function of plotted 
for different values of T. (Pr, a) = (1.1, 0.1). Curve 1 ,  T = 0.05; 2, 0.01; 3, 0.001; 4, 0.0001, 5, 
0.00001. 

- 

where A = Lp", is a constant independent of T. As T -+ 0 the variation in u along the 
upper cat's-eye boundary decreases and, because its minimum value is always zero, 
its mean value decreases as well. Hence FL increases in magnitude. 

We would also expect that as the wave amplitude decreases, co would approach 
zero, possibly offsetting the increase in FL. For the cases calculated, 5, actually moves 
away from 0 as T decreases as long as T is greater than a certain size. Decreasing T 
below this threshold starts to move co toward zero, but not quickly enough to 
compensate for the large growth of FL. 

The above argument suggests that the particular form of F determined by the 
viscous secularity condition plays an important role in the outcome. The particular 
form of F' used here guarantees that the value of the vertical density gradient 
averaged along a contour remains constant, equal to p',. Any functional form for F 
which somehow guarantees that the mean value of pc stays below some negative 
value will guarantee that F increases as T -+ 0. How this balances with changes in go 
would depend on the particular form of F. 

Increasing Ri and decreasing T both decrease the value of the vorticity 
immediately above the cat's-eye corner. In  both cases the solution breaks down when 
N, becomes less than about 0.2. As Ri is increased the minimum value of T required 
for a solution increases. This suggests that there is a certain inescapable (but still 
rather small) amount of transmission, which increases with increasing stratification. 

Some of the effects of varying both z and T are shown in figures 11-13. Figure 11 
shows a series of plots of N, us. a for different amplitudes of the transmitted wave. 
It clearly shows that increasing T increases the maximum value of Ri for which there 
is a solution and that increasing Ri increases the lower bound on the size of the 
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FIGURE 12. The ratio ofR, the amplitude of the reflected wave (leadingharmonic), to the amplitude 
of the transmitted wave T as a function of the Richardson number Ri plotted for different values 
of T.  (Pr, a) = (1.1,  0.1). Curves 1-5 as figure 11.  

transmitted wave. For example, for = 0.5 the amplitude T must be greater than 
0.01 in order for there to be a solution (i.e. for N, to be greater than 0.2). Plotting 
cat’s-eyes for varying T for this value of Ri would result in a pattern similar to that 
shown in figure 9, with the minimum thickness and breakdown of the solution both 
occurring for larger values of T than for those for R = 0.4. For a smaller value, say 
E = 0.3, the solution is still valid for T = 0.00001 and in order to get a minimum 
thickness and a breakdown of the solution the value of T would have to be much 
smaller. Figure 12 shows how the ratio RJT varies with for different values of T. 
It shows that R,IT increases as Ri increases with T fixed and that it increases as T 
decreases with Ri fixed. Finally figure 13 shows how the ratio RJT varies with T for 
different values of z. For large transmitted waves the ratio of the reflected and 
transmitted waves is largely independent of T. As E gets smaller the ratio 
approaches 1,  the value for an unstratified fluid (z = 0). 

The overall picture is that weakly stratified nonlinear critical layers are very 
permeable to gravity waves, but even a moderate amount of stratification (about 
enough to make the ambient flow stable by the Miles-Howard criterion) turns them 
into rather good reflectors. Other things being equal, low-amplitude waves are 
transmitted less than high-amplitude waves, with the amplitude sensitivity becoming 
more pronounced with increasing stratification. 

The effect of varying the Prandtl number Pr is now considered. The only way that 
the Prendtl number enters the problem is as a parameter in the equation for G 
(equation (2.18)). Considering various values of Pr is equivalent to considering a one- 
parameter family of functions G .  Because Pr appears in the forms 1/Pr and 
(1 - Pr)/Pr the effect of varying Pr is quite small if Pr is much larger than 1 .O. Table 
4 gives some pertinent values for a series of cases for which z = 0.4, T = 0.02 and 
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FIGURE 13. The ratio ofR, the amplitude of the reflected wave (leading harmzic), to the amplitude 
of the traqltplitted wave T as a function of T plotted for different values of Ri. (Pr, a) = (1.1, 0.1). 
Curve 1, Ri = 0.3; 2, 0.2; 3, 0.1. 

~~~ 

Pr N, No R, I ,  Nm Rim 

0.25 0.673 0.815 0.03564 0.02971 1.33 0.22 
0.50 0.565 0.709 0.05118 0.04720 1.50 0.18 
0.75 0.527 0.671 0.05928 0.05585 1.59 0.16 
1.00 0.507 0.650 0.06446 0.06130 1.64 0.15 
1.50 0.486 0.629 0.07039 0.06747 1.70 0.14 
2.00 0.476 0.619 0.07360 0.07080 1.73 0.13 
4.00 0.460 0.603 0.07908 0.07645 1.79 0.13 
8.00 0.452 0.594 0.08228 0.07974 1.81 0.12 

TABLE 4. Effect of varying Pr for (x, T ,  a) = (0.4, 0.02, 0.1) 

a = 0.1. The most important trend is that as Pr increases N, and No decrease. For Pr 
less than about 0.50 the solution changes rapidly with Pr. The solution is not very 
sensitive to values of Pr once Pr is above about 1.50. The lowering of the vorticity 
is accompanied by thicker cat’s-eyes and larger reflected and incident waves, a 
familiar result. 

It is the change in G above the cat’s-eyes that is responsible for the variation of 
N, with Pr. Because the solution in the upper linear layer is independent of Pr all the 
above cases have the same initial conditions at the top of the critical laxer. Inside the 
critical layer the vorticity variation along a streamline is given by -Ri @“ which is 
essentially independent of Pr (the function F used here keeps the mean density 
gradient constant, a restraint independent of Pr).  The decrease in N, then, is due to 
changes in the mean vorticity along the upper cat’s-eye boundary which is in turn 
determined by G. Figure 14 shows the sequence of functions of G as well as the mean 
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FIQURE 14. Profiles of (a) G and (b) the mean vorticity (average value along a streamline) for 
different values of Pr plotted as functions off; along a vertical line passing through the corner so 
that the functions above and below the cat's-eyes are separated. (Ri, T, a) = (0.4,0.01,0.1). Curve 
1 ,  Pr = 0.25; 2, 0.5; 3, 0.75; 4, 1.0; 5, 1.5; 6, 2.0; 7, 4.0; 8, 8.0. 

vorticity for the cases cited in table 4. The mean vorticity a t  the upper cat's-eye 
boundary decreases as Pr grows, hence the variation in N,. As Pr+O the mean 
vorticity a t  the upper boundary becomes infinite due to the 1/Pr term in the 
equation for G. 

The reduction of N, while z increases or T decreases is a result obtained for all 
values of Pr. It leads to the introduction of the function zcrit(T, Pr) .  A solution 
exists only if < ECrit(T, Pr) .  The function zc,(T, Pr) decreases with Pr and 
increases with T. Figure 15 plots the critical values Ri,,,, as a function of Pr for a few 
values of T.  The critical value is typically in the range 0.4-0.6. 

Finally we briefly mention the dependence of the solutions on the horizontal 
wavenumber 01. As u is decreased the flow becomes more hydrostatic and we would 
expect an improved matching between the linear layers and the critical layer. 
Numerical results indicate that the solutions break down when a is greater than 
about 0.3. Below this value the vorticity in the centre decreases very slowly as u 
decreases, resulting in a slight thickening of the cat's-eyes and larger reflected waves. 
The effect of decreasing a is generally more pronounced for smaller values of %. 

4.4. Incident, rejlected and transmitted waves : relationships 
In  the previous section the dependence of the solution on the parameters X, T, Pr 
and 01 was discussed in general terms. In this section attention is focused on some of 
the more physically interesting aspects of the solutions. These include the 
relationships among the incident, reflected and transmitted waves, the amplitudes of 
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FIUURE 15. zc,,, (T, Pr)  as a function of Pr for different values of T. A solution exists only if Ri 
is less than R&(T, Pr) .  Curve 1, T = 0.05; 2, 0.01; 3, 0.002. 

the hills below the critical layer and their relationship to the three waves, and finally 
the resonance positions (locations where the hill amplitude has its minimum value). 

If only a single wave mode is present then the amplitude A of the hill which can 
generate a particular flow pattern is given by A = [12+R2+21R cos (2rnzh+6)]1. It 
depends on the height z,, at which it is located and on the vertical wavenumber rn. 
In  particular A lies between R - I and R + I .  If more than one mode is present these 
bounds are modified. In most cases computed the mode-one waves dominate the flow 
so that R usually is larger than I ,  but because other modes are in general present the 
lower bound R - I  is not usually attained. 

In all the cases calculated with only one transmitted mode present the amplitudes 
of the reflected and incident waves of the first mode were much larger than the 
amplitudes of the higher modes ( -  5 times larger than the second harmonics). 
However, when the transmitted wave is small (close to the minimum cutoff value) 
then the difference between the amplitude of the reflected and incident waves can be 
very similar for the first two modes. The momentum flux in mode k in the lower linear 
layer is given by 

Thus if Rl- I l  is sufficiently small in relation to R2-12 the momentum flux in the 
mode-two waves can be a significant contribution. The sum over all the modes 
must be negative, equal to the momentum flux in the upper linear layer which is 

Consider again the effect of varying the amplitude of the transmitted wave T 
for % = 0.4, Pr = 1.1 and a = 0.1. Recall that the solution breaks down at around 
T = 0.002. Table 5 gives the values of the amplitudes of the reflected and incident 
waves for the first two modes, along with the corresponding momentum fluxes which 

:(I: - R i )  km, L. 

-g!P k d .  
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T 
0.075 
0.050 
0.040 
0.030 
0.020 
0.010 
0.0075 
0.005 
0.004 
0.003 
0.002 

R, 
0.1923 
0.1359 
0.1125 
0.0893 
0.0659 
0.0421 
0.0363 
0.0312 
0.0297 
0.0294 
0.0355 

I ,  
0.1750 
0.1256 
0.1047 
0.0839 
0.0628 
0.0410 
0.0356 
0.0309 
0.0296 
0.0294 
0.0358 

R2 
0.0300 
0.0193 
0.0155 
0.01 18 
0.0084 
0.0051 
0.0045 
0.0039 
0.0040 
0.0043 
0.0072 

I2 

0.0360 
0.0218 
0.0170 
0.0124 
0.0083 
0.0046 
0.0039 
0.0033 
0.0033 
0.0036 
0.0061 

Momentum 
in mode 1 
(YO of total) 

113.3 yo 
107.9% 
105.7 % 
103.2 Yo 
99.7 % 
91.2 yo 
84.5 Yo 
65.9 % 
41.4% 

-29.8 % 
- 634.5 y o  

Momentum 
in mode 2 
(YO of total) 

- 13.5 ?'o 
-8.0% 
-5.8% 
-3.2% 

0.3 yo 
9.0% 

15.7% 
34.2 yo 
58.6% 

7 10.5 yo 
128.6% 

TABLE 5. The amplitudes of the reflected and incident waves, with the corresponding momentum 
fluxes for different values of T (Ri, Pr, a) = (0.4, 1 .1 ,  0.1) 

are given as a percentage of the total momentum flux. For large waves the 
momentum flux in the first mode is much larger than i t  is in the second mode. As the 
amplitude of the transmitted wave decreases, the momentum flux in the second 
mode grows in relation to that in the first mode. A rapid growth in the relative 
importance of the second harmonics is seen whenever the parameters of the problem 
are close to  a breakdown point. The amplitudes of the waves in the first mode are 
always much greater than those in the second mode. 

Recall that, as discussed in 34.1, the accuracy of the second harmonics is not very 
good. It is interesting to note that by adding a small-amplitude second harmonic to  
the transmitted wave (about 0.1 the amplitude of the leading harmonic) and by 
appropriately choosing the phase difference between the two waves, the momentum 
flux in the second harmonics below the critical layer can be zeroed out. This zeroing 
out is accompanied by very small changes to the values of R, and I , ,  but does 
significantly change the value of R l - I l .  Owing to the questions surrounding the 
validity of the second harmonics below the critical layer this aspect of the solution 
is not pursued any further. It may be worth noting that, even for the largest cases 
cited in table 5 ,  R l - I ,  is smaller than the amplitude of both of the mode-two waves. 

Table 6 shows the results of a large number of calculations for different amplitudes 
T of the transmitted wave and for different values of z. The ratios of the amplitudes 
of the reflected and incident waves to the transmitted waves of the first modes are 
given, along with the difference and sum of the two ratios. The latter give the ratio 
of the minimum and maximum hill sizes to the transmitted wave respectively. The 
minimum hill size is always significantly smaller than the amplitude of the 
transmitted wave while the maximum is always significantly larger. For example, for 

= 0.4 and T = 0.05 the hill must be between 0.2 and 5 times the size of the 
transmitted wave. For Ri = 0.2 and T = 0.05 the hill must be between 0.4 and 2.5 
times the size of the transmitted wave. (Note that if just a single mode were present 
in the two linear layers then T2 = R;-I;  and the two ratios (Rl -I l ) /T  and 
(Rl+I l ) /T  are the reciprocals of each other.) As T is decreased the ratios of the 
minimum and maximum hill sizes to T decrease and increase respectively. 

Two trends are readily apparent. For a given value of %, as T is increased the 
ratios RJT,  I J T ,  (R, +I,)/!?' and (R, -I,)/!?' become fairly constant (compared to  
their rapid changes for small values of T ) ,  the first three ratios decreasing while the 
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- 
Ri 

0.45 

0.4 

0.3 

0.2 

0.1 

T 
0.075 
0.05 
0.04 
0.03 
0.02 
0.01 
0.075 
0.050 
0.040 
0.030 
0.020 
0.010 
0.005 
0.004 
0.003 
0.002 
0.075 
0.05 
0.02 
0.01 
0.005 
0.001 
0.075 
0.05 
0.02 
0.01 
0.005 
0.002 
0.001 
o.oooo1 
0.05 
0.02 
0.01 
0.005 
0.001 
o.Ooo1 

3.04 2.83 
3.40 3.23 
3.69 3.54 
4.11 3.98 
5.08 4.99 
9.28 9.32 
2.56 2.33 
2.72 2.51 
2.81 2.62 
2.98 2.80 
3.29 3.14 
4.21 4.09 
6.24 6.19 
7.44 7.41 
9.79 9.80 

17.73 17.91 
1.90 1.60 
1.91 1.62 
2.01 1.74 
2.11 1.86 
2.32 2.10 
3.03 2.86 
1.48 1.09 
1.47 1.07 
1.47 1.08 
1.49 1.11 
1.53 1.16 
1.58 1.23 
1.63 1.28 
1.95 1.68 
1.19 0.647 
1.18 0.626 
1.19 0.638 
1.19 0.649 
1.21 0.674 
1.23 0.710 

0.21 
0.17 
0.15 
0.13 
0.09 

-0.04 
0.23 
0.21 
0.19 
0.18 
0.15 
0.11 
0.05 
0.03 

-0.02 
-0.18 

0.30 
0.29 
0.27 
0.25 
0.23 
0.17 
0.40 
0.40 
0.39 
0.39 
0.37 
0.36 
0.34 
0.28 
0.55 
0.55 
0.55 
0.54 
0.53 
0.52 

5.87 
6.62 
7.22 
8.09 

10.07 
18.60 
4.90 
5.23 
5.43 
5.77 
6.43 
8.30 

12.43 
14.84 
19.59 
35.64 
3.50 
3.53 
3.74 
3.97 
4.42 
5.89 
2.57 
2.54 
2.55 
2.60 
2.69 
2.81 
2.91 
3.63 
1.84 
1.81 
1.82 
1.84 
1.88 
1.94 

0.39 0.26 
0.37 0.25 
0.36 0.25 
0.35 0.25 
0.34 0.25 
0.34 0.26 
0.36 0.24 
0.34 0.24 
0.32 0.24 
0.31 0.23 
0.29 0.23 
0.27 0.23 
0.27 0.24 
0.27 0.24 
0.27 0.24 
0.29 0.25 
0.30 0.22 
0.28 0.21 
0.24 0.21 
0.23 0.21 
0.23 0.21 
0.23 0.21 
0.25 0.19 
0.23 0.19 
0.21 0.19 
0.20 0.18 
0.20 0.18 
0.20 0.19 
0.20 0.19 
0.21 0.20 
0.19 0.16 
0.17 0.16 
0.17 0.16 
0.17 0.16 
0.17 0.16 
0.17 0.17 

TABLE 6. The ratios of the amplitudes of the reflected and incident waves, and their sums and 
differences, to the transmitted waves of the first mode. The distances of the first resonant position 
below the corner of the cat’s-eye and below the matching of the critical and lower linear layers are 
also shown, as a fraction of vertical wavelength (Pr, a) = (1.1, 0.1). 

last one increases. For T fixed the first three ratios all decrease while the last one 
increases as the Richardson number is decreased. 

Also shown in table 6 are the distances of the first resonant position (height where 
leading mode has amplitude R, -Il) below the corner of the cat’s-eye as well as below 
the height where the critical layer and the lower linear layer were matched together. 
These values are Res,,, and Ream respectively and are given as a fraction of the 
vertical wavelength in the region of the lower linear layer where the mean wind speed 
is constant and equal to - 1 .O. Resonant positions are separated by distances of half 
a vertical wavelength. 

from about 
0.16 for Ri = 0.1 to about 0.24 for Ri = 0.4. Res,,, shows more variation. It is larger 
than Res, (as it must be since the cat’s-eye corner is above the matching level) and 

For % constant Res, is almost independent of T and increases with 
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increases both with and to a lesser degree with T. The difference between Res,,, 
and Res, grows as the parameter values change in such a way that the flow is less 
linear and the match takes place further below the cat’s-eyes. For these cases more 
of the wave is reflected at the ‘bump’ in the lower mean wind and the centre of 
reflection is shifted to this region of the flow. It is interesting to note that all the 
resonant positions are close to 0.25 (plus multiples of 0.5). This is the value Peltier 
& Clark (1983) found to be consistent with the resonant amplification of mountain 
waves observed in their numerical simulations. However, since their simulations 
were for an isolated mountain rather than a sinusoidal one, the agreement may be 
fortuitous. 

5. Conclusions 
For an incompressible, nearly inviscid, stratified fluid, we have considered the 

behaviour of a spatially periodic internal gravity wave impinging on a critical level 
from below; transmitted waves, if any, were constrained to satisfy a radiation 
condition far above the critical level. By a combination of asymptotic and numerical 
means, we were able to construct steady, nonlinear solutions to this problem over a 
broad area of parameter space. In contrast to most previous studies (e.g. Maslowe 
1972, 1986 or Stewartson 1981) we did not need to assume very weak stratification, 
nor did we require the waves to be trapped in the vicinity of the critical level. These 
steady solutions are end states that could result from integration of the nonlinear 
initial-value problem ; it is conjectured that they represent the asymptotic long-time 
behaviour of the stratified critical level problem, as has proved to be the case for 
unstratified critical levels. 

As usual, the flow consists of a layer of recirculating streamlines, called cat’s-eyes, 
sandwiched between two regions of open streamlines (which are nevertheless 
governed by nonlinear dynamics near the critical level). The vorticity interior to the 
cat’s-eyes was chosen according to  a torque condition, which minimizes the long- 
term viscous spin-up or spin-down of the vortices. Unlike Maslowe’s solutions, these 
solutions do not have a velocity discontinuity across the cat’s-eye boundaries, and 
hence do not require a viscous boundary layer to complete the solution. In  this sense, 
they are more stable than previous solutions ; however, the local Richardson number 
does fall below 0.25 in some regions near the cat’s-eye boundaries, and so the 
possibility of Kelvin-Helmholtz instability cannot be ruled out. We were able to 
construct these continuous solutions because we allowed the position of the critical 
level to shift somewhat, rather than fixing it at  the location of the zero wind line of 
the unperturbed background flow. 

Another departure from earlier results is that in our solutions the cat’s-eye 
boundaries have corners, just as in the unstratified case. Maslowe found cornerless 
solutions because of his choice of where to start the closed-streamline region, together 
with certain imposed symmetries. In fact, we have shown that similar cornerless 
solutions can also be found in the absence of stratification. Thus, the presence or 
absence of corners has little to do with stratification. We did find, though, that with 
stratification a ‘corner condition’ must be imposed in order to avoid unphysical 
discontinuities in vertical velocity. 

In contrast to linear theory, the nonlinear critical level can be strongly reflecting; 
in fact it is over-reflecting, to the extent that there is a transmitted wave. Very 
weakly stratified critical levels allow a substantial transmitted wave to pass, but a 
rather moderate increase in stratification (about enough to bring the ambient flow 
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Richardson number above 0.25) turns them into nearly perfect reflectors. Other 
things being equal, low-amplitude waves are transmitted less than high-amplitude 
waves, with amplitude sensitivity becoming more pronounced with increasing 
stratification. 

For the reasons noted in the Introduction, the resonant positions (i.e. the distances 
below the critical level at which a small forcing can drive a large response) are of 
considerable physical importance. Strong resonance occurs only if the transmitted 
wave is weak, a condition that is easy to satisfy if the stratification is not too small. 
The resonant positions depend on wave amplitude and on the Richardson number, 

of the background flow. They are located approximately f, f, %, . . . of a vertical 
wavelength below the critical layer. They move closer to the critical layer as % 
decreases, the first resonant position being about 0.2 wavelengths below the cat’s-eye 
corner for R = 0.2 and about 0.3 wavelengths below for R = 0.4. For large values of 
Ri the first resonant position is very close to 0.25 wavelengths below the level where 
the critical laver is matched to the lower linear laver. It is never further than 0.25 
wavelengths away and can be as low as 0.16 wavelengths away for very small values 
of K .  

There appears to be an upper bound on the strength of the ambient stratification 
for which a solution can be found. The breakdown is manifested by small vorticity 
in the cat’s-eyes, and consequent catastrophic thickening of the recirculating region. 
Solutions were obtained only if Ri is less than some critical value zcrit(T, Pr) which 
depends on the amplitude T of the transmitted wave and on the Prandtl number Pr. 
This critical value increases with T and decreases with Pr. There is little dependence 
on the horizontal wavenumber a as long as it is less than about 0.3. The critical 
values of Ri are typically in the range 0.4-0.6. Our conjecture is that a gravity wave 
impinging on a too strongly stratified critical level would go through a stage in which 
a thick layer of fluid is mixed, thus bringing the stratification down to a value which 
can support a steady state. 

The existence of steady solutions such as we have constructed merely shows that 
it is possible for the nonlinear initial-value problem to evolve into a steady, highly 
reflective state. It does not by any means guarantee that the solutions are physically 
realizable. This can be probed most effectively by numerical integration of the 
nonlinear initial value problem. We are not aware of any high-resolution long-term 
simulations that are conducted in a geometry that permits comparison with our 
results. The simulations reviewed in Fritts (1984, see his figure 14) do indeed suggest 
a stratified cat’s-eye shape with relatively flat top, bulging bottom, and phase shift 
between top and bottom, much as seen in our solutions. However, these solutions 
were not carried out to a steady state, and the critical level was too close to the 
boundary to permit sensible evaluation of reflection coefficients. The more recent 
simulations of Winters & D’Asaro (1989) were carried out in a larger vertical domain. 
However, the incident wave consisted of a pulse of relatively short duration ; there 
was no suggestion of the formation of cat’s-eyes, and the incident wave packet was 
predominantly absorbed near the critical level. There is thus a need for high- 
resolution long-term simulations of a horizontally periodic wave in a vertically 
extensive domain. It is to be hoped that the steady-state properties adduced above 
will be of assistance in guiding such work. 
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